3.669 \(\int \frac{(d+e x)^{3/2}}{(f+g x) (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=133 \[ -\frac{2 \sqrt{d+e x}}{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}-\frac{2 \sqrt{g} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{3/2}} \]

[Out]

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*Sqrt[g]*ArcTan[(Sqrt[g]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.176276, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {868, 874, 205} \[ -\frac{2 \sqrt{d+e x}}{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}-\frac{2 \sqrt{g} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{(c d f-a e g)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x])/((c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*Sqrt[g]*ArcTan[(Sqrt[g]*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(c*d*f - a*e*g)^(3/2)

Rule 868

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(c*e*f + c*d*g - b*e*g)), x]
 + Dist[(e^2*g*(m - n - 2))/((p + 1)*(c*e*f + c*d*g - b*e*g)), Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*
x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[
c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{g \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d f-a e g}\\ &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{\left (2 e^2 g\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{c d f-a e g}\\ &=-\frac{2 \sqrt{d+e x}}{(c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{2 \sqrt{g} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{(c d f-a e g)^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0290364, size = 71, normalized size = 0.53 \[ -\frac{2 \sqrt{d+e x} \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{\sqrt{(d+e x) (a e+c d x)} (c d f-a e g)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/((f + g*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*Hypergeometric2F1[-1/2, 1, 1/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])/((c*d*f - a*e*g)*Sqrt
[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.278, size = 128, normalized size = 1. \begin{align*} -2\,{\frac{\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}}{\sqrt{ex+d} \left ( cdx+ae \right ) \left ( aeg-cdf \right ) \sqrt{ \left ( aeg-cdf \right ) g}} \left ( g{\it Artanh} \left ({\frac{g\sqrt{cdx+ae}}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) \sqrt{cdx+ae}-\sqrt{ \left ( aeg-cdf \right ) g} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

-2*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(g*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*(c*d*x+a*e)
^(1/2)-((a*e*g-c*d*f)*g)^(1/2))/(e*x+d)^(1/2)/(c*d*x+a*e)/(a*e*g-c*d*f)/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{3}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}{\left (g x + f\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(3/2)/((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)*(g*x + f)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.74607, size = 1170, normalized size = 8.8 \begin{align*} \left [-\frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{-\frac{g}{c d f - a e g}} \log \left (-\frac{c d e g x^{2} - c d^{2} f + 2 \, a d e g + 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d f - a e g\right )} \sqrt{e x + d} \sqrt{-\frac{g}{c d f - a e g}} -{\left (c d e f -{\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f +{\left (e f + d g\right )} x}\right ) + 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}}{a c d^{2} e f - a^{2} d e^{2} g +{\left (c^{2} d^{2} e f - a c d e^{2} g\right )} x^{2} +{\left ({\left (c^{2} d^{3} + a c d e^{2}\right )} f -{\left (a c d^{2} e + a^{2} e^{3}\right )} g\right )} x}, -\frac{2 \,{\left ({\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{\frac{g}{c d f - a e g}} \arctan \left (-\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d f - a e g\right )} \sqrt{e x + d} \sqrt{\frac{g}{c d f - a e g}}}{c d e g x^{2} + a d e g +{\left (c d^{2} + a e^{2}\right )} g x}\right ) + \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d}\right )}}{a c d^{2} e f - a^{2} d e^{2} g +{\left (c^{2} d^{2} e f - a c d e^{2} g\right )} x^{2} +{\left ({\left (c^{2} d^{3} + a c d e^{2}\right )} f -{\left (a c d^{2} e + a^{2} e^{3}\right )} g\right )} x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

[-((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-g/(c*d*f - a*e*g))*log(-(c*d*e*g*x^2 - c*d^2*f + 2*a*d*e*g +
2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(-g/(c*d*f - a*e*g)) - (c*d*e*
f - (c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*s
qrt(e*x + d))/(a*c*d^2*e*f - a^2*d*e^2*g + (c^2*d^2*e*f - a*c*d*e^2*g)*x^2 + ((c^2*d^3 + a*c*d*e^2)*f - (a*c*d
^2*e + a^2*e^3)*g)*x), -2*((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(g/(c*d*f - a*e*g))*arctan(-sqrt(c*d*e*
x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*f - a*e*g)*sqrt(e*x + d)*sqrt(g/(c*d*f - a*e*g))/(c*d*e*g*x^2 + a*d*e*g
+ (c*d^2 + a*e^2)*g*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(a*c*d^2*e*f - a^2*d*e^2*
g + (c^2*d^2*e*f - a*c*d*e^2*g)*x^2 + ((c^2*d^3 + a*c*d*e^2)*f - (a*c*d^2*e + a^2*e^3)*g)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x